

Outline

- Requirements/Constraints
- Theory (Beam and optics parameters, acceptance)
- IP8 layout
- Hadron and electron optics
- Acceptance optimization
- Linear optics and chromaticity compensation for the HSR
- Summary

Requirements/Constraints

- Fit into the existing RHIC IP8 experimental hall.
- Match in to the ARCs on each end.
- Space for two spin rotators and a snake (~13m each).
- Reuse as many RHIC magnets as possible.

Beam and Optics Parameters

- Geometric emittance ϵ is the area occupied by bunch in (x,x') phase space.
- ullet is a constant and made as small as possible
- ullet Optics and ϵ determines the beam parameters at the IP
 - rms beam size $\sigma^* = \sqrt{\epsilon \beta^*}$
 - rms angular beam divergence $\sigma'^* = \sqrt{\frac{\epsilon}{\beta^*}}$
 - Transverse momentum spread $\sigma_{\!pT} = p_{beam} \sigma' \, ^*$
 - Note $\epsilon = \sigma^* \sigma'^*$
- Have control over β * through optics design
- Luminosity $L \propto \frac{1}{\sigma_x * \sigma_y *} \propto \sigma_x' * \sigma_y' * \propto \sigma_{pTx} \sigma_{pTy} \propto \sigma_x^{max} \sigma_y^{max}$

Acceptance as a function of x_L and p_T

• p_T acceptance at $x_L = 1$

$$p_T^{min} > 10 \ p_0 \theta_{IP} = 10 \ p_0 \ \sqrt{\frac{\epsilon}{\beta^*}}$$

• x_L acceptance at $p_T = 0$

$$x_L < 1 - 10 \frac{\sigma_x}{D} = 1 - 10 \frac{\sqrt{\beta_x^{2nd} \epsilon_x + D_x^2 \sigma_\delta^2}}{D}$$

- Secondary focus allow for $|D\sigma_{\delta}| > \sqrt{\beta \epsilon}$
- Can reach the fundamental limit $x_L < 1 10\sigma_\delta$

• Increase of β_x^* which in turn increase the β_x^{2nd} may result in a smaller x_L acceptance

IP8 hall layout

IP8 full layout

- Reserved space for spin rotators on both sides and a snake on rear side.
- Hadron beam line matched to the ARCs on each side.
- Electron beam line matched up-to the spin rotators.

IR8 ion optics

- Doublet optics with reversible polarity of the second quad depending on the energy.
 - $\beta_{x/y}^* = 80/7.2 \text{ cm} (> 135 \text{GeV})$
 - $\beta_{x/y}^* = 37/2.5 \text{ cm} (< 135 \text{GeV})$
- Both sides are matched in to the ARCs
- Further study and optimization is needed for reusing RHIC magnets.
- Space limitation might require new magnets in some areas.

IR8 second focus

Table 1

Parameter	Value	units
beta_x	0.62	m
Dx	0.38	m
emittance	11.3	nm
RMS momentum spread	6.8E-04	

$$x_L < 1 - 10 \frac{\sigma_x}{D} = 1 - 10 \frac{\sqrt{\beta_x^{2nd} \epsilon_x + D_x^2 \sigma_\delta^2}}{D}$$

- Table 1 shows the parameters at 2nd focus that can be used to calculate the maximum detectable x_L using the equation from slide 4
- $x_L < 0.9928$

IR8 electron optics

- Electron beam line optics and geometry very similar to IP6
- Special care was going to keep the relative angle between the IP and spin rotators the same as IP6
- Not yet matched all the way to the ARCs

IR8 Acceptance

Neutrons ±7mrad

Protons
$$\pm 5$$
mrad
 $\Delta p/p = 0$
 $p_T = 1.37 \text{GeV}, x_L = 1$

Protons ± 7 mrad $\Delta p/p = -0.5$ $p_T = 0.96 \text{GeV}, x_L = 0.5$

- Initial layout with magnets centered to a common axis.
- Protons and neutrons sees interference from the magnet apertures.
- How to improve the acceptance?

Acceptance optimization constraints

- Similar constraints for high p_T and $x_L = 1$ protons
- Applied to both sides of the magnet
- Total of 8 constraints per magnet
- Variables that can be used: magnet shift in x, rotation around y, (magnet aperture, magnet length)

Optimized acceptance

Neutrons ±7mrad

Protons
$$\pm 5$$
mrad
 $\Delta p/p = 0$
 $p_T = 1.37 \text{GeV}, x_L = 1$

Protons
$$\pm 7$$
mrad
 $\Delta p/p = -0.5$
 $p_T = 0.96 \text{GeV}, x_L = 0.5$

- Layout with magnets offsets introduced to the final focusing quads (FFQ) and the two dipoles.
- Improved acceptance for both neutron and protons compared to the initial layout.
- FFQ Magnet apertures and strengths are at their limits of what can be practically achieved.

Linear optics and chromaticity compensation

- How to compensate chromaticity in the collider with two IR's?
- Make use of chromatic interference of the two IRs
- No symmetry requirements to IRs
- Control chromatic beam smear around the ring and compensate it at both IPs

Summary

- Hadron beam line
 - Magnet apertures limits the acceptance.
 - B0 dipole field and aperture needs further study.
 - Further optimization is needed to reuse RHIC magnets
- Electron beam line
 - Not yet matched to ARCs
- Both rings
 - Chromaticity correction with two IRs
 - Dynamic aperture studies
 - Magnet feasibility.

Acknowledgements

Jefferson Lab

V. Burkert, R. Ent, Y. Furletova, D. Higinbotham, A. Hutton, F. Lin, T. Michalski, V.S. Morozov, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, A. Sy, C. Weiss, M. Wiseman, W. Wittmer, Y. Zhang,

Brookhaven National Lab

E.-C. Aschenauer, J.S. Berg, A. Jentsch, A. Kiselev, C. Montag, R. Palmer, B. Parker, V. Ptitsyn, F. Willeke, H. Witte

Old Dominion University

C. Hyde

Stony Brook University

P. Nadel-Turonski

Thank you!

Backup

Beam and Optics Parameters

- Another focus of recent effort
- Strategy
 - ARC 9 used semi-local compensation of the rear side of IP8
 - ARC 5 used for semi-local compensation of the forward side of IP6
 - Forward side of IP8 and rear side of IP6 partially compensate each other
 - Since IP8 forward and IP6 rear are different, the difference in their chromatic kicks is compensated by sextupoles in ARC 7
 - Exact phase advance between the IPs and sextupoles optimizes slightly.

R. Gamage 8/3/2021

Electron-Ion Collider

Luminosity sharing

- Conservative assumption: luminosity is shared between two detectors, different bunch pairs collide at different IPs.
- Luminosity in the medium energy range can be pushed at the expense of acceptance.

Luminosity and p_T acceptance trade off

 $100 \times 10 GeV$ configuration

